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Abstract. Physically-based snow models provide valuable information on snow cover evolution and are therefore key to pro-

vide water availability projections. Yet, uncertainties related to snow modelling remain large as a result of differences in the

representation of snow physics and meteorological forcing. While many studies focus on evaluating these uncertainties, issues

still arise, especially in environments where sublimation is the main ablation process. This study evaluates a case study in the

semi-arid Andes of Chile and aims to compare two snow models with different complexities, SNOWPACK and SnowModel, at5

a local point, over one snow season. Their sensitivity relative i) to physical calibration for albedo and fresh snow density and ii)

to forcing perturbation is evaluated based on ensemble approaches. Results indicate larger uncertainty depending on the model

calibration than between the two models (even though the significant differences in their physical complexity). We also confirm

the importance of albedo parameterization, even though ablation is driven by sublimation. SnowModel is particularly sensitive

to this choice as it strongly affects both the sublimation and the melt rates. However, the day of snow-free snow surface is not10

sensitive to the parameterization as it only varies every eight days. The albedo parameterization of SNOWPACK has stronger

consequences on melt at the end of the season leading to a date difference of the end of the season of 41 days. However, despite

these differences, the sublimation ratio ranges are in agreement for the two models: 42.7-63.5% for SnowModel and 51.3 and

64.6% for SNOWPACK, and are related to the albedo calibration choice for the two models. Finally, the sensitivity of both

models to the forcing data was in the same order of magnitude and highly influenced by the precipitation uncertainties.15

1 Introduction

Snow models provide valuable information on snow cover evolution and are therefore key to quantify runoff and provide

accurate water availability projections. Several models, with different complexities, from empirical to physical approaches,

have been developed to simulate snow depth changes. Empirical approaches, such as degree-day models (e.g. Braithwaite and

Olesen, 1989; Hock, 2003) are based on a simple statistical relationship to positive air temperatures to simulate snow melt.20

Comparatively, physically-based approaches consider all energy flux exchanges at the snow surface by solving the surface
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energy balance equation (Oke, 2002). These approaches, coupled with snow models, enable a more complete understanding of

snow physical processes and are essential for understanding the interaction between snow cover evolution and climate change.

Physically-based snow models have different complexities in their physical representations, from a single layer approach

(e.g. Strasser and Marke, 2010), to more sophisticated multi-layer detailed models representing the evolution of snow mi-25

crostructure and the layering of snow physical properties (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012), leading to

a wide variety of snow models with a wide variety of parameterizations. In a snow model intercomparison study, Etchevers

et al. (2004) highlighted the importance of parameterization choice, especially regarding the net longwave and albedo charac-

terisation. After comparing 33 snow models, Rutter et al. (2009) concluded that no universal ’best’ model exists and model

performance strongly depends on the study site.30

In addition to the development of new models, many studies have focused on model improvements offering different param-

eterizations in a single model (e.g. Douville et al., 1995; Dutra et al., 2010). In such frameworks, often many parameters need

to be calibrated and are often difficult to be set according to local measurements, such as the albedo and aerodynamic rough-

ness length (Brock et al., 2000, 2006). To address this issue, and to consider and quantify parameter uncertainty propagation

in simulated snow depth changes, recent studies have started to use ensemble approaches. Here models are evaluated based35

on different likely combinations of values of variables such as snow albedo, snow compaction, fresh snow density and liquid

water transport (e.g. Essery et al., 2013; Lafaysse et al., 2017; Günther et al., 2019).

In addition, forcing data uncertainty has a significant influence on the simulated snow depth changes (e.g. Magnusson

et al., 2015; Raleigh et al., 2015; Günther et al., 2019) and needs to be considered in model evaluations. While point scale

simulations forced by direct observations generally reduce forcing uncertainties, measurement errors can be considerable40

due to the complexity of both measuring certain parameters as well as maintaining measurement sites (e.g. for precipitation

(MacDonald and Pomeroy, 2007; Smith, 2007; Wolff et al., 2015), sensor inclination (Weiser et al., 2016) or sensor failure).

Methods such as stochastic perturbation with random noise (e.g. Charrois et al., 2016) or following a uniform or normally

distributed bias with different magnitudes (e.g. Raleigh et al., 2015) can be used to build an ensemble of meteorological

forcing and explicitly simulate the consequence of forcing uncertainty on the simulated snow depth (e.g. Charrois et al., 2016;45

Zolles et al., 2019; Günther et al., 2019).

Despite past efforts to improve snow models and quantify uncertainty propagation, the uncertainties regarding snow physics

representation and meteorological forcing remains (e.g. Essery et al., 2013; Raleigh et al., 2015; Günther et al., 2019); espe-

cially in regions where sublimation is the main ablation process.

This study aims to evaluate two physical snow models with different complexities, considering calibration and forcing50

uncertainties. There we simulate snow depth changes in the Andes of Chile using data from an automated weather station. In

this semi-arid region, snow model uncertainty is a key concern as snow melt is an essential water resource for the population

(Favier et al., 2009). Despite this importance, quantifying and understanding the snow cover evolution remains limited and

challenging due to i) high sublimation rates related to strong solar radiation, cold air temperatures, and high wind speeds (e.g.

MacDonell et al., 2013a; Réveillet et al., 2020), and ii) shallow snow depths due to very low precipitation amounts (Scaff et al.,55

2017; Réveillet et al., 2020; Ayala et al., 2017). In previous studies the effect of wind on snow cover pattern distribution has been
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assessed by Gascoin et al. (2013) and the relative importance of melt versus sublimation has been studied over one catchment

by Réveillet et al. (2020), both making use of the physically-based snow model SnowModel (Liston and Elder, 2006b). The

study performed by Mengual Henríquez (2017) assessed the snow types in different Chilean regions with SNOWPACK (Bartelt

and Lehning, 2002; Lehning et al., 2002b, a). Nevertheless, an accurate assessment of different snow models’ sensitivity to60

parameterization choice or input forcing is currently missing, although it is expected to have a large impact.

In this work, the sensitivity of SnowModel and SNOWPACK, the common snow models previously used in this region, is

assessed in function of parameterization choices and forcing uncertainty. First, both models are run with different combinations

of parameterizations to assess the uncertainty of parameterizations (Sect. 3.2). Second, forcing uncertainty propagation in the

snow model is considered by running the models with 1000 sets of perturbed forcing (Sect. 3.3. Considering model sensitivities65

to calibration and forcing, models are compared and differences are discussed (Sect. 3.4).

2 Study area and data

We assess the sensitivity of both models using data from an AWS over the snow season of 2017. First this study area and the

meteorological observations are described, followed by the data preprocessing procedure.

2.1 Study area70

The study area is located in the La Laguna catchment, in the Chilean Coquimbo region, close to the Argentinian border

(Fig. 1a). To assess the sensitivity we use data from the Tapado Automatic Weather Station (AWS), a permanent station since

2009 located close to the terminus of the Tapado Glacier at 30◦S, 69◦W, 4306 m a.s.l. (Fig. 1c). The site shows a complex

topographic setting with average (maximum) wind speeds of 4.2 m s−1 (>15 m s−1) in 2017 and little precipitation (<200

mm a−1) that arrives as snow during fewer than 10 events per year. Precipitation events mainly occur during the winter season75

(>90%) (Rabatel et al., 2011; Réveillet et al., 2020). Therefore the area surrounding the AWS is only covered with snow in

austral winter. At this elevation, no vegetation is observed.
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Figure 1. a) Map of Chile with the Coquimbo Region (orange) and the study area location (red box). b) Tapado AWS at the 26th of April

2018 showing the Geonor precipitation gauge (left) which is 10 m from the central mast of the AWS (right). c) Map of the borders of the La

Laguna catchment (green), with the AWS locations (red points). Landsat 8 images of 29 August 2017 are used as background and maps and

photo are made by A. Voordendag.
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2.2 Meteorological observations

The meteorological forcing data consisted of hourly mean values of air temperature (TA), relative humidity (RH), incoming

shortwave radiation (S↓), incoming longwave radiation (L↓), wind speed (WS), wind direction (WD) and air pressure (PA)80

measured by the AWS (Fig. 2, Table S1.1 in the Supplementary Material (SM)). Precipitation forcing consisted of hourly data

by a Geonor rain gauge (Fig. 1b). During the snow season, defined as the period with snow on the ground (i.e. between 10 May

and 6 November 2017), the station recorded meteorological observations continuously except for the TA and RH, for which

gaps have been filled using three nearby AWSs (Fig. 1c, Sect. 2.3).

Hourly snow depth (SD), reflected shortwave radiation (S↑) and six-hourly means of snow water equivalent (SWE) were85

also recorded at the station and used for model calibration and evaluation. SWE was measured with a CS725 sensor by Camp-

bell Scientific which passively detects the change in naturally emitted terrestrial gamma radiation from the ground after it

passes through snow cover. It provided two independent SWE observations measuring both potassium and thallium gamma

rays (Wright, 2011). The uncertainty given by the manufacturer is±15 mm from 0 to 300 mm and±15% from 300 to 600 mm,

but differences of up to 82 mm w.e. between gamma ray measurements at ∼300 mm w.e. were measured. The manufacturer90

suggests that the output with the higher count is generally the most reliable, which were the potassium gamma rays measure-

ments (Randall, 2018, personal communication). We display both data sets and estimate an accuracy of ±25 mm for this data

set.

2.3 Preprocessing of forcing data

When modelling the snow evolution, we covered a period (5 May to 30 Nov 2017) extending outside the snow season to allow95

a five day spin-up phase to enable the model to reach a physical equilibrium with the applied forcing. Since continuous data

are required for both snow models, preprocessing was necessary to fill the gaps in the TA and RH data sets (23 June 11:00 and

31 October 10:00 due to sensor failure) and to correct the wind-induced undercatch in the precipitation data. Therefore, TA

and RH data was interpolated based on lapse rates from nearby AWSs (Agua Negra (4774 m a.s.l.), Llano de las Liebres (3565

m a.s.l.) and La Laguna (3209 m a.s.l.; Fig. 1c).100

For TA, a daily moist adiabatic lapse rate was calculated using TA measured at La Laguna and Paso Agua Negra AWSs

(1565 m elevation difference) between 2014 and 2017. We fitted a sinusoidal trend over these lapse rates for the 4-year period

and found daily lapse rates with a maximum of -6.9◦C km−1 in winter and a minimum of -8.0◦C km−1 in summer. These

daily lapse rates were subsequently applied to TA observations of Llano de las Liebres AWS which is the only AWS that

covers the entire period of missing data in 2017. For RH a similar approach was applied using the lapse rate of the daily dew105

point temperature between the Paso Agua Negra and La Laguna AWSs and applying it to data measured at the Llano de las

Liebres AWS. Dew point temperature was converted to RH following Liston and Elder (2006a). Evaluation of this lapse rate

interpolation, based on 1638 overlapping observations at Tapado, shows an uncertainty (i.e. RMSE) of 2.8◦C and 9.97% for

TA and RH respectively.
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Figure 2. Meteorological observations at Tapado with with daily precipitation (P), average daily relative humidity (RH), temperature (TA),

wind speed (WS), air pressure (PA), incoming shortwave radiation (S↓) and incoming longwave radiation (L↓) from April to December

2017. Dotted lines indicate the TA and RH interpolations.

Since the precipitation observations were strongly influenced by wind, an undercatch in the precipitation gauge is likely110

(e.g., MacDonald and Pomeroy, 2007; Smith, 2007; Wolff et al., 2015). Therefore the Geonor precipitation observations were

corrected by applying the catch efficiency factor CE using MacDonald and Pomeroy (2007, Eq. (3)) based on WS observations

adjusted from the wind sensor height (5.4 m) to gauge height using a logarithmic wind profile (e.g., Lehning et al., 2002a) and
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a roughness length of 0.001 m:

CEGeonor = 1.01exp(−0.09WS ) (1)115

This corrected precipitation is hereinafter referred to as reference precipitation (Pref ). Precipitation uncertainty was quan-

tified as the difference between the uncorrected, observed precipitation and the precipitation reconstructed from the SWE

observations, which was computed using the cumulative positive SWE (potassium) changes during precipitation events (de-

tected by the Geonor T-200B). This cumulative SWE approach reduced the inclusion of deposition of drifting snow resulting

which would result in an overestimation of SWE. Based on this approach, the precipitation ranges between 190 mm a−1 (from120

precipitation gauge) and 470 mm a−1 (from SWE reconstruction). The difference between these values is likely caused by the

location offset between the precipitation gauge and the SWE and SD sensor (Fig. 1b), as the AWS is placed in a concave area

that collects more snow than the Geonor precipitation gauge.

3 Methods

3.1 Model descriptions125

3.1.1 SNOWPACK

SNOWPACK was developed by the Swiss Federal Institute (SLF) for Snow and Avalanche Research (Bartelt and Lehning,

2002; Lehning et al., 2002a, b). It is a one-dimensional model, but can be implemented in the spatially distributed, three-

dimensional snow cover and earth surface model Alpine3D (Lehning et al., 2006). SNOWPACK includes a MeteoIO prepro-

cessing library for meteorological data (Bavay and Egger, 2014) which was not used, as we implemented a homogeneous130

preprocessing approach for both models (see Sect. 2.3). SNOWPACK is a physically-based model which has the ability to

simulate snow physical properties (e.g. snowpack temperature, layer thickness, snow microstructure and density) and snow

processes (e.g. refreezing, sublimation, melt, evaporation) for multiple layers, which are merged if layers become too thin.

Sublimation and evaporation are calculated for the top element of the snowpack and melt is simulated using a water transport

bucket scheme. In this bucket scheme, all the liquid water exceeding a threshold water content is transported downward in135

the snowpack or soil (Wever et al., 2014). An extensive description of the model can be found in Bartelt and Lehning (2002);

Lehning et al. (2002a, b).

3.1.2 SnowModel

SnowModel is a spatially distributed snowpack evolution modelling system composed of four submodels MicroMet, EnBal,

SnowPack and SnowTran3D (Liston and Elder, 2006b). MicroMet is preprocessing library for meteorological data interpola-140

tion, which was not used in this study as we focused on one location only while we implemented a homogeneous preprocessing

approach for both models (see Sect. 2.3). EnBal calculates standard surface energy balance exchanges (Liston and Hall, 1995).

SnowModel’s SnowPack subroutine is a single or multi-layer (max. six layers) snowpack evolution and runoff model that

7
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describes snowpack changes in response to precipitation and melt fluxes defined by MicroMet and EnBal (Liston and Hall,

1995; Liston and Elder, 2006b). In SnowModel, the melted snow is redistributed through the new snow depth up to a maximum145

density threshold of 550 kg m−3. Any additional melt water is added to the runoff. In this study the model was run with the

maximum of snow layers (i.e. six layers) to be comparable with the multiple amount of layers in SNOWPACK. Finally, the

three-dimensional model to simulate snow erosion and deposition SnowTran3D (Liston and Sturm, 1998) is not activated in

this study; this choice is discussed in Sect. 5.2.

3.2 Model calibration150

To assess the sensitivity of both models to parameterization choice and input uncertainty, we applied a three step approach.

First, we calibrated both models similarly to allow later comparisons (Sect. 3.2.1). Second, we varied the parameterization

settings of each to determine the effect of parameterization choice (Sect. 3.2.2). Third, we implemented forcing perturbations

(Sect. 3.3) to evaluate model sensitivities to the meteorological forcing uncertainties. The combination of sensitivity analysis

to model calibration and meteorological forcing allowed to evaluate and compare the two models (Sect. 3.4).155

3.2.1 Parameter values used in both models

Initially, both models were calibrated using similar parameters to facilitate intercomparison. These parameters were derived

from observations or previous studies (Table 1). For example, the soil albedo was set to 0.15, as this is the average observed

albedo at the moment when there is no snow. The observed daily albedo is defined as the daily sum of the average hourly

reflected shortwave (S↑) divided by the daily sum of average hourly incoming shortwave radiation (S↓)(Fig. 3e,f). In the160

absence of roughness length measurements, the roughness length of the bare soil is set to 0.020 m, corresponding to the default

roughness length of pebbles and rocks in SnowModel. As surface ground temperature measurements are not available, we set

it to -1◦C in both models. -1◦C is the default value in SnowModel and ensures that the first snow does not immediately melt.

Atmospheric stability and roughness length (z0) are key parameters in semi-arid regions where sublimation is an impor-

tant process. As SnowModel only allows atmospheric stability corrections based on the Richardson number, we opted for this165

method and similar roughness lengths in both models to assure intercomparability. The snow roughness length was fixed to

0.001 m based on an earlier sensitivity study (Réveillet et al., 2020) and unpublished eddy covariance measurements (Mac-

Donell et al., 2013a). Additionally, the sensitivity of both models to roughness length is further analysed in Sect. S3 of the SM,

as it was not used to select the final model configurations.

3.2.2 Sensitivity analysis of variable parameterizations170

To assess the impact of the parameterizations on the snowpack simulation, an ensemble approach based on different combi-

nations of albedo and snow density parameterizations was used (e.g. Essery et al., 2013; Lafaysse et al., 2017). The choice to

limit the sensitivity test to these two parameters is discussed in Sect. 5.2.
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Table 1. SNOWPACK and SnowModel parameter characteristics. The possible snow albedo parameterizations and fresh snow density models

are described in Sect. S4.

SNOWPACK SnowModel

Soil albedo 0.15 (calibrated) 0.15 (calibrated)

Max/min snow albedo None 0.6/0.9 (calibrated)

Atmospheric stability correction model Richardson number Richardson number (default)

Roughness length (soil) 0.02 m 0.02 m (default)

Roughness length (snow) 0.001 m (calibrated) 0.001 m (calibrated)

Surface ground temperature -1◦C -1◦C (default)

Thermal conductivity Default Multilayer subroutine

Wind erosion/snow transport by wind Off Off

Maximum number of snow layers Unlimited 6 layers

Fresh snow density parameterizations 5 options 1 default options and 2 from SNOWPACK

Albedo parameterizations 6 options, 4 used 2 options

Simulated ablation processes Sublimation, runoff, evaporation Sublimation, runoff

Water transport in snowpack Bucket scheme (default) Default

For SNOWPACK, 20 runs were performed over the 2017 season based on four different albedo and five fresh snow density

parameterizations. Each of the albedo parameterizations is based on empirical relations derived from continuous observations175

at Weissfluhjoch (Lehning et al., 2002a) or on grain size (Schmucki et al., 2014), while the fresh snow parameterizations are

empirical formulas depending on the TA, RH, WS and surface temperature. More details are found in the Sect. S4 (SM) and

the mentioned references.

For SnowModel, an ensemble of six simulations was run, considering two albedo and three snow density parameterizations.

The albedo parameterizations range between 0.6 and 0.9 depending i) on TA solely (more details in Liston and Hall (1995),180

Liston and Elder (2006b) and in Sect. S4 (SM)) or ii) on TA and time (Strack et al., 2004, and Sect. S4). SnowModel’s

default fresh snow density parameterization depends on the wet bulb temperature, but we included two fresh snow density

parameterizations from SNOWPACK depending on TA, RH, WS and surface temperature to test the model more extensively.

In these additional parameterizations, we preserved the SnowModel defaults for minimum (50 kg m−3) and maximum fresh

snow density (158.5 kg m−3).185

Each of the ensemble simulations was forced by the unperturbed measurements (Pref , TA, RH, PA, WS, WD, S↓, L↓) de-

scribed in Sect. 2.3 and evaluated by comparing the model output of SD, SWE and albedo with the corresponding observations.

Based on this evaluation the simulation with the lowest RMSE and highest R2 between the observed and modelled albedo is

chosen as the reference for the forcing sensitivity analysis discussed in Sect. 3.3.
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Table 2. Forcing data for the snow models with the corresponding uncertainty σ used in the MC simulation. The uncertainties of PA, WS,

WD, S↓, and L↓ are the uncertainties as given by the manufacturers and for TA and RH, the uncertainties as described in Sect. 2.3 are used.

Observation Uncertainty σ in MC simulation

Accumulated precipitation (P) Between 190 and 470 mm a−1, Fig. S2.1

Air pressure (PA) ±1.0hPa

Air temperature (TA) ±2.8◦C

Incoming longwave radiation (L↓) 10% (95% confidence level)

Incoming shortwave radiation (S↓) 5% (95% confidence level)

Relative humidity (RH) ±9.97% RH

Wind speed (WS) ±0.3 m/s

Wind direction (WD) ±3◦

3.3 Forcing uncertainty estimation190

To assess the model sensitivity to meteorological measurement uncertainties, the meteorological forcing presented in Sect. 2.3

is perturbed to generate an ensemble of 1000 forcing files. Therefore, all input variables except P were modified by adding

hourly perturbations with a normal distribution N(µ= 0,σ2) with σ the uncertainty reported in Table 2.

The precipitation perturbations consisted of adding random variations N(µ= 0,σ2) to the reference precipitation (Pref,tot:

278 mm w.e. a−1) based on the mean Pmean,t between the reconstructed and measured hourly precipitation rate at every time195

step), σ is considered a normally distributed random number, used as scaling factor and kept constant throughout the time

series. Based on this scaling factor, the reference precipitation for each of the 1000 simulations (Psim,t) at time t is modified

using:

Psim,t = Pref,t +σPmean,t (2)

The precipitation distribution results are shown in Fig. S2.1a where the total precipitation at the end of the season is normally200

distributed around the reference precipitation (Fig. S2.1b).

Subsequently, based on the disturbed input data, 2000 snow model simulations are performed: 1000 with meteorological

perturbations and 1000 with combined meteorological/precipitation perturbations. This setup was chosen to enable the dif-

ferentiation between meteorological and precipitation uncertainties, which would be difficult in a combined approach where

precipitation uncertainty would dominate.205

3.4 Model evaluation

Model evaluation consists of comparing the model output of SD, SWE and albedo with the corresponding observations. For

the parameterization uncertainty, this consists of evaluating the RMSE and R2 between the modelled and the observed albedo,

to select the best reference for each model (i.e. twenty for SNOWPACK and six for SnowModel). It is chosen to only compare

between modelled and observed albedo, as this ensures the best possible net shortwave radiation term in the energy balance210
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equation. The forcing uncertainty is evaluated by comparing the differences of end of snow season. Last, the differences in

ablation processes of the parameterizations are shown along with the energy fluxes of each reference simulation.

4 Results

4.1 Sensitivity analysis of parameterizations

The SW and SWE evaluation of the parameterization sensitivity analysis shows that the simulated SD and SWE are lower215

than the observations for both models (Fig. 3). This can be explained by the precipitation underestimation recorded by the

precipitation gauge despite correcting for wind.

For SNOWPACK, the spread of the simulated SD from the 20 different calibrations is the largest at the beginning (i.e. May,

June) and at the end of the snow season (i.e. October) (Fig. 3a). The date of snow free surface ranges between 8 October and 19

November (i.e. 41 days of differences), depending on parameterization choice, and covers the observed date of snow removal220

(i.e. 16 October). The different SNOWPACK parameterizations show a mean SD difference of 10 cm (which corresponds to

9% of the total SD) between the minimum and maximum simulated SD (Fig. 3a), with a maximum of 84 cm observed at 12

May, the first day of snowfall. For the SWE, this corresponds to a mean difference of 23.9 mm w.e. (i.e 6.9% of the total SWE)

(Fig. 3c). The large modelled SD spread in May and June can be explained by the different density parameterization choices as it

is not apparent in the SWE simulations. The rapid decrease (3-8 cm d−1) of snow depth until July, caused by compaction of the225

snowpack, is simulated by the majority of fresh snow density parameterizations, while only one fresh density parameterization

models a more moderate compaction (Fig. 3a). From July onward, the measured snow depth reduces 10 centimetres per 25

days, which is only simulated by the fresh density parameterization that simulated moderate compaction before July.

The albedo evaluation (Fig. 3e) and corresponding statistics (Sect. S5) highlight one parameterization choice that outper-

forms all other parameterizations (i.e. RMSE of 0.09 and R2 of 0.85 compared to the albedo) in terms of snow compaction230

after snowfall events and albedo evolution (Fig. 3e). Therefore it is selected as the reference simulation (represented in bold

lines in Fig. 3) for the forcing uncertainty simulations.

For SnowModel, the largest SD spread of the six ensembles occurs at the end of the simulated snow season (i.e. August

and September) with complete snow removal between 19 and 27 September (i.e. 8 days) (Fig. 3b). The mean SD difference

between the parameterizations is 11 cm (i.e. 10% of the total SD), with a maximum of 108 cm at 12 May, while for SWE the235

mean difference is 18 mm (i.e. 5.2% of the total SWE) with a maximum of 187 mm at 27 and 28 June (Fig. 3d).

A closer analysis of Fig. 3f shows that SnowModel’s output clusters into two groups, where the grouping is determined by

the albedo parameterization with limited influence of fresh snow density parameterizations. The differences between the two

clusters increases as the difference in albedo between the parameterizations increases at the end of May. Quantitative analysis

(Sect. S5) shows best performance scores for the time-evolution albedo approach in combination with the reference snow240

density parameterization (RMSE of 0.123 and R2 of 0.776). Therefore, these are used as the reference simulation (bold line

in Fig. 3).
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Figure 3. a-b) SD, c-d) SWE and e-f) albedo simulations (coloured) of the ensemble approaches for SNOWPACK (red) and SnowModel

(blue) and observations (black). The bold coloured lines show the reference simulations chosen as the most optimal calibration according to

the measured albedo. The dotted line of SWE indicates the less reliable (lower) SWE measurement from thallium rays (See Sect. 2.3).

Comparison of the SNOWPACK and SnowModel output shows similar SD variations attributed to snow density parameter-

izations that simulate low density snowfall with strong subsequent compaction. In reality, this happens at Tapado until June,

followed by a different regime with denser fresh snow and less compaction. The biggest difference between the models, how-245

ever, is the result of the albedo parameterizations. Where SnowModel relies on two simplistic albedo models based on albedo

ranges, SNOWPACK relies on empirical relations which are not adapted to the Tapado climate. Nevertheless, the albedo of the

reference run of SNOWPACK performs well in a semi-arid area.
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4.2 Sensitivity analysis of forcing data

4.2.1 Without precipitation uncertainties250

The forcing perturbations without precipitation uncertainty show that SNOWPACK is more sensitive than SnowModel (Fig-

ures 4a,c) with mean SD/SWE differences of 7.9 cm/17.5 mm w.e. for SNOWPACK and 5.7 cm/7.7 mm w.e. for SnowModel.

Also temporally, SNOWPACK shows larger sensitivities with larger spread uncertainty throughout the season, whereas for

SnowModel the spread only emerges after mid-June. The forcing uncertainty results in complete snow removal simulations

ranging from 25 Sep - 15 Oct (i.e. 19 days) for SNOWPACK and 17-20 September (i.e. 3 days) for SnowModel. The larger255

difference between both models in terms of complete snow removal is probably caused by precipitation input variations in

SNOWPACK as result of TA, RH and S↓ constraints on snowfall in SNOWPACK. Since these requirements are not always

met when the forcing is perturbed, it may result in precipitation variations in the input.

4.2.2 With precipitation uncertainties

The forcing perturbations with precipitation uncertainty shows that precipitation uncertainty has a much larger impact on SD260

and SWE ensemble spread (Fig. 4b,d). Averaged over the season this results in SD/SWE differences of 18.4 cm/52.5 mm

w.e. and 24.9 cm/63.7 mm w.e. for SNOWPACK and SnowModel, respectively. Despite similar average spread over the entire

season observed for both models, the range of the simulated day of free snow surface is higher for SNOWPACK (i.e. 24

September and 30 October) than for SnowModel (i.e. between 16 September and 6 October). Indeed, the spread at the end of

the ablation season is diminishing for SnowModel while it is increasing for SNOWPACK.265

4.3 Consequences of the model choice and calibration on sublimation

Ablation rates (Fig. 5) show that sublimation is the dominant driver for mass loss in both models until September (i.e. cold pe-

riod), and followed by melt from September to the end of the season (i.e. end of November, and called the melting period). Note

that for SNOWPACK, the first day of free snow surface of the reference run is 9 October and for SnowModel 20 September.

For SNOWPACK, the spread of the averaged sublimation rates corresponding to the ensemble runs from the first day of270

snow to 15 October ranges between 1.48 and 1.61 mm w.e. d−1 (Fig. 5a). During the cold period, when no melt occurs, all

parameterizations result in similar sublimation amounts, with sublimation rates ranging between 1.16 and 1.32 mm w.e. d−1.

At the end of the season, the total sublimation ranges between 142 and 179 mm w.e. (corresponding to 51.3 to 64.6% of the

total ablation). During the melting period, the ensemble runs show a large spread of melt rates ranging between 2.15 to 9.05

mm w.e. d−1. The total amount of runoff is between 60 and 105 mm w.e. for SNOWPACK and this model also simulates275

evaporation, which contributes for 7.3 to 10.2% of total ablation (Fig. 5a).

For SnowModel, sublimation differences between the parameterizations are larger (Fig. 5b) with average sublimation rates

from the first day of snow to 20 September ranging between 1.26 to 2.04 mm w.e. d−1, and it is worth noting that significant

differences are also observed during the cold season (Fig. 5a). At the end of the winter season the sublimation totals range
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Figure 4. Observed (black) and simulated (colour) SD and SWE by SnowPack and SnowModel forced by the 1000 ensembles of meteoro-

logical data. The reference run (see Sect. 3.2.2) of both models is the bold coloured curve. The shaded area corresponds to the 1000 runs of

a)-b) snow depth and SWE c)-d) of SNOWPACK (red) and SnowModel (blue) for the MC run. a)-c) are without precipitation uncertainties

and b)-d) are with precipitation uncertainties. The dotted line of SWE indicates the less reliable (lower) SWE measurement from thallium

rays (See Sect. 2.3)

between 119 and 176 mm w.e. (which corresponds to 42.7 to 63.5% of the total ablation). Significant differences are also280

calculated during the melting period, when the simulated melt rate leads to a total melt difference of 58 mm w.e. at the end of

the season.

The spread of the ensemble runs for both sublimation and melt simulated by SnowModel can be attributed to the choice of

the albedo parameterization. While the ensemble calibration simulations do not lead to significant differences in the modelled

end date of the snow season (i.e. difference of eight days), the parameterization strongly impacts the proportion of sublimation285

versus melt to the total ablation (Fig. 5b,d). During the cold period, simulations considering the lowest albedo (the reference

simulation), lead to a higher sublimation rate (Fig. 5b). Indeed, a lower albedo increases the energy absorbed by the snowpack,
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and as the temperature is below the freezing point, this energy leads to an increase in the sublimation. Second, the increase

of net SW radiation also affects the physical properties of the snowpack resulting in an increase of compaction (Fig. 3b). The

snow density of the snowpack is therefore higher (Fig. S6.1 in SM), which directly affects the thermal conductivity of the290

upper snow layers (Yen, 1981). Changing the surface temperature is directly linked to the latent heat flux and therefore to the

sublimation, explaining the different sublimation ratios simulated depending on the albedo parameterizations.

Contrary to SnowModel, the albedo parameterization of SNOWPACK does not affect the sublimation but strongly influences

the melting speed (Fig.5), which can be attributed to the more complex characteristics of this model. SNOWPACK allows re-295

freezing and evaporation of melting snow within the snowpack, which can lead to a longer melt season, whereas calculated

evaporation leads to a lower amount of runoff from melt. Also, SNOWPACK considers a more complex representation of snow

physics, such as the grain size and the snow surface area (SSA), which directly impacts the albedo and can help to explain the

wide diversity of melt simulations.

300

When comparing the ablation and energy fluxes (Fig. 5 and 6), it is clear that the sublimation rates of both reference runs are

very similar (difference of 27.6 mm w.e. of the cumulative sublimation at 1 September), whereas subtle differences are related

to differences in turbulent and latent heat fluxes (average cold period QL is -28.3 W m−2 for SNOWPACK vs. -34.5 W m−2

for SnowModel).

305

At the end of the season, the cumulative melt is comparable between the reference simulations of the two models (90.8

mm w.e. for SNOWPACK and 86.5 mm w.e. for SnowModel, Fig. 5c,d), although with large differences in melt distribution.

For SnowModel, the entire snowpack melts within a few days (i.e. 11.2 mm w.e. d−1 between 12 and 19 September) while

melt is later and slower in SNOWPACK (7.3 mm w.e. d−1 between 18 and 27 September). This corresponds to higher net SW

radiation and lower albedo simulations in SnowModel during the melting period (Fig. 6), which increases the energy available310

for melt and subsequent runoff.

Evaporation and refreezing of meltwater also explain part of the differences in ablation results between the models. SNOW-

PACK simulates 0.30 mm w.e. d−1 of evaporation of the liquid water contained in the snowpack (10% of total ablation corre-

sponding to a total of 28 mm) and also allows for refreezing due to the low temperature during the night. These processes, not

considered by SnowModel, reduce the runoff simulated by SNOWPACK, whereas SnowModel often encounters the snowpack315

threshold density to activate direct run-off in the bucket scheme.
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Figure 5. Cumulative sublimation (a,b) and runoff from melt (c,d), simulated by SNOWPACK (red) and SnowModel (blue). For SNOW-

PACK the cumulative evaporation from melt is shown (purple lines in a). Results for all the ensemble calibrations are shown and the bold

lines correspond to the reference simulations of each model.
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Figure 6. Stacked daily averages of the modelled heat fluxes at Tapado AWS simulated with the reference runs of a) SNOWPACK and b)

SnowModel. SWnet is net shortwave radiation, LWnet is net longwave radiation, QS is the sensible heat flux, QL is the latent heat flux,

QG is the heat flux from the ground (only simulated by SNOWPACK), and QM is the energy consumed by melt. The fluxes are only plotted

at the times where the models simulate snow.
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5 Discussion

5.1 Model sensitivity and comparison

Our results show the importance of model parameterization and model structure over the snow model choice, despite the limited

model options chosen for the ensemble approach, and the large differences in the two model complexities chosen in this study.320

This conclusion, found here in an arid environment, is in total agreement with the studies performed in Alpine areas (Etchevers

et al., 2004; Günther et al., 2019). Günther et al. (2019) highlighted for instance the importance of the model structure as being

higher than the choice of the parameter values.

In this study, the albedo parameterization appears the most important parameter to be properly assessed, as also reported

by the studies performed in Alpine regions (Etchevers et al., 2004; Zolles et al., 2019). This can be surprising at first glance325

as in the semi-arid Andes the ablation is mainly driven by the sublimation and the albedo calibration is generally crucial to

accurately simulate the melt. However, according to the results presented here, the two models agree with the larger sensitivity

to the albedo parameterization. This is likely related to the absence of the consideration of the uncertainty associated to the

turbulent fluxes parameterization in the ensemble approach, while it can have major implications in surface energy balance

modelling (e.g. Dadic et al., 2013; Conway and Cullen, 2013; Litt et al., 2017; Réveillet et al., 2020). The representation330

of turbulent fluxes in snow models is commonly based on the bulk method, and the Richardson number is usually used to

evaluate the atmosphere stability (e.g. Liston and Hall, 1995; Vionnet et al., 2012). The roughness value is therefore used to

parameterize the turbulent fluxes. While the stability function cannot be compared between the two models chosen in this study,

the sensitivity of SNOWPACK to the six possibilities available in the current version is low (i.e. max SD difference of few

centimeters, results not shown). In a study over Brewster Glacier in New-Zealand, Conway and Cullen (2013) pointed out the335

importance of the stability functions to properly simulate the heat fluxes with low wind speed and large temperature gradients

and also that the modelled latent heat fluxes were unaffected by the choice of exchange coefficient parameterization. The

study takes place in a dry and windy environment without large temperature gradient and thus, this explains the low differences

observed related to the chosen atmospheric stability function. The turbulent fluxes parameterization is sensitive to the roughness

value and observations such as Eddy Covariance measurements are essential to accurately parameterize the turbulent fluxes340

(e.g. Conway and Cullen, 2013; Litt et al., 2017; Réveillet et al., 2018). Due to the absence of such measurements, and also due

to the strong variability of this value over the time (e.g. MacDonell et al., 2013b; Pellicciotti et al., 2005; Nicholson et al., 2016),

a sensitivity analysis was performed (see Sect. S3). Here we varied the value within a random range and found a larger range

of uncertainty for SNOWPACK than for SnowModel. This is likely due to the higher complexity in physical representation of

SNOWPACK, but it does not allow us to conclude if this uncertainty is higher than the albedo parameterization.345

The impact of parameterization choice differs for the two models as the uncertainty is directly related to the difference in

snow physical representation and the characteristics of the models. Indeed, the range of the ensemble approach simulated by

SNOWPACK is higher than that simulated by SnowModel directly related to both higher calibration choice for SNOWPACK

and more complex physical representation of the processes.
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Likewise, results presented here show that the main sensitivity remains in the forcing uncertainty, in agreement with previous350

studies (Magnusson et al., 2015; Günther et al., 2019; Raleigh et al., 2015). For instance, (Magnusson et al., 2015) found that

the models of different complexity (temperature-index models vs. physical models) show similar ability to reproduce daily

observed snowpack runoff, and concluded that the forcing uncertainties is the greatest factor affecting model performance,

rather than model parameterizations. However, as mentioned by Raleigh et al. (2015), simulated SD and SWE are critically

sensitive to the relative magnitude of errors in forcing. They also mentioned that precipitation bias was the most important355

factor, in agreement with the findings of our study.

Finally, while Rutter et al. (2009) pointed out that no universal ’best’ model exists and model performance strongly depends

on the study site, here we show, that in a semi-arid environment, the conclusions are similar for Alpine environments in that

model structure and parameterization choices represent an important step to improve model performance.

5.2 Limitations of the study and further works360

The sensitivity study of the two models to the forcing is done by perturbing the meteorological variables with random noise and

does not necessarily preserve the physical consistency. Some studies (e.g. Charrois et al., 2016) maintained this consistency

by applying a random perturbation using a first-order auto-regressive model (Deodatis and Shinozuka, 1988). However, the

forcing perturbation does not affect the conclusion of the relative comparison of the two models which only requires the exact

same forcing as input to be relevant. For the same reason, the choice of method applied for the forcing correction (i.e. for365

precipitation) and reconstruction (i.e. for the TA and RH) would not affect the conclusions of the model comparison. However,

due to the forcing uncertainty related to measurements errors, and also because the sensor locations may not be representative

of the area, only a qualitative comparison between the simulated and observed SWE and SD measurement is done in this

work. Günther et al. (2019) already outlined that the snow cover is spatially heterogeneous even at very small scales due to

topographic and microclimatic effects on accumulation, redistribution, and ablation processes, introducing an uncertainty in370

validation data. We also show that in any case, due to i) the question of the sensor location representativity of the area, ii) the

precipitation undercatch because of the wind, and, iii) the strong sensitivity of models to precipitation uncertainty, this study

highlights the complexity and necessity of accurately measuring precipitation.

The ensemble approach of the calibration is built considering limited parameterization options, contrary to other studies375

where a large number of physical options are considered (e.g. Essery et al., 2013; Lafaysse et al., 2017; Zolles et al., 2019).

In our case, choosing snow models with different physical complexities limits the number of calibration possibilities, as cal-

ibration of same variables are chosen for the comparison. Thus, some parameterizations, such as the choice of atmospheric

stability correction only available in SNOWPACK, were excluded and this model is calibrated following the same options

found in SnowModel (Sect. 3.2.1).380

Testing different albedo parameterizations is chosen as i) different options are possible in both models and ii) previous studies

concluded that the largest absolute uncertainties originate from the shortwave radiation and the albedo parameterizations (e.g.

Zolles et al., 2019). The sensitivity test to different fresh snow density parameterizations was also chosen as previous studies
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identified this calibration as a significant uncertainties in model calibration (e.g. Essery et al., 2013). Finally, energy balance

models are known to be sensitive to z0, especially in cold and dry regions where sublimation is the main ablation process (e.g.385

Réveillet et al., 2020). However, due to this important sensitivity and the absence of measurements to properly calibrate this

value, the sensitivity test by changing the value within a random range is performed independently (see Sect. S3).

Otherwise, despite the choice of limiting the calibration options, SNOWPACK’s sensitivity to model calibration is evaluated

based on 20 simulations, whereas SnowModel’s evaluation is based on six simulations only. However, the difference of the

number of simulation does not impact the conclusion, as the width of the spread of different calibrations was not quantitatively390

assessed.

Among the possible calibrations, the snow transport option has not been activated, while the option is available in both models.

However, due to the strong wind speed characteristics of the study area (Gascoin et al., 2013, and Fig. 2), snow transport is

expected to be considerable. Yet, snow transport estimation remains out of the scope of this study, focused on energy balance

comparisons, mainly to assess differences in sublimation rates. Also, in a study performed in the Pascua-Lama catchment, a re-395

gion to the north of Tapado AWS, Gascoin et al. (2013) highlighted that the inclusion of SnowTran3D does not change the fact

that the model is unable to capture the small-scale snow depth spatial variability (as captured by in-situ snow depth sensors).

Last, snow transport in SNOWPACK can only be simulated with a SD assimilation, which could not be used as validation data.

However, due to the importance and complexity in modelling snow transport, properly assessing its impact could be assessed

in future work.400

6 Conclusion

The aim of this study is to compare two snow models, SNOWPACK and SnowModel, and evaluate their sensitivity relative to

calibration and forcing. For that purpose, the two models are run over the 2017 snow season, at local point, and forced with i)

an ensemble of different physical calibrations and ii) an ensemble of perturbed forcing.405

The calibration ensemble simulations were built considering different parameterizations of the albedo and the fresh snow

density. Results indicated a significant difference related mainly to the calibration choice of the albedo. However, the impact

of this choice affects the two models differently. For SnowModel, the albedo parameterization has a significant impact on the

simulated sublimation during the cold period (i.e. difference of ∼40 mm w.e.) while SNOWPACK simulates similar sublima-

tion rates for all the possible calibrations. The albedo parameterization of SNOWPACK has stronger consequences on melt410

at the end of the season leading to a difference of 45 mm w.e. of the total melt, and a difference of the end of the season

of 41 days, related to the calibration chosen. This model differences are mainly related to the model characteristics (i.e. the

consideration of the water evaporation and refreezing into the snowpack), and the more complex representation of the snow

physics in SNOWPACK.

In addition, results presented in this study highlight a larger uncertainty depending on the model calibration (despite the limited415

number of options chosen) than between the two models (even though the significant differences in their physical complexity).
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The sensitivity of both models to the forcing data is highly influenced by the precipitation uncertainties. As for ensemble

calibration study, SNOWPACK shows larger uncertainty in modelling the end of the season (i.e. difference of 36 days) com-

pared to SnowModel (i.e. 20 days), likely related to more complex physical processes. SnowModel shows larger uncertainty

during the start of the melting period, but, a small difference on the simulated date of the end of the season. This is attributed420

to the fast melt of the entire snowpack (i.e. few days) simulated by this model.

Otherwise, for both models, results show uncertainty of similar magnitude between the calibration and forcing. However, this

result strongly depends on the bias chosen for the forcing perturbation as well as the number of calibrations selected, which,

here, does not enable us to draw a conclusion about the larger source of uncertainty or the most appropriate model to model

snow depth evolution in the semi-arid Andes. .425

This study is performed over one winter season providing conclusions of the model sensitivity, specific for this winter. In

further studies, simulations could be performed over a larger time period, and at distinct places to reinforced and discuss the

conclusions presented here. In addition, the model choice could be extended to other models, and in particular snow models

with similar physical complexity. Such work would provide additional information of the calibration sensitivity by allowing a

comparison based on a larger choice of possible calibrations.430
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